

Towards a Mobile Security & Privacy Simulator

Using Simulation to Evaluate Mobile Security and Privacy Threats as well as possible Countermeasures

2011 IEEE Conference on Open Systems (ICOS2011)

Motivation

- Today: beginning of new era of mobile computing
 - Proliferation and capabilities of mobile networked devices rapidly increases
 - Mobile phones and tablets become central digital hub in the life of more and more people
 - multimedia, (mobile) social networks, online banking, location-aware services, endless apps
 - Lots of security and privacy implications come along with it
 adopters of these technology accept implications

Motivation

- Threats grow ever more critical as number of users increase
 - Absolut number of user rise
 - Fraction of incautious and unknowing people rises
- Mobile threats has to be more intensively addressed
 - Still in research, but also
 - Usable real-world implementations are needed

Research – Up to now

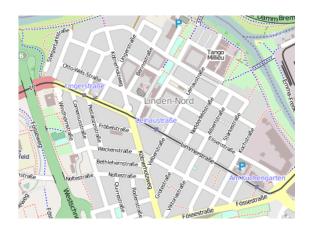
- Approaches used to evaluate mobile security & privacy
 - Pure theoretical
 - e.g. mathematical epidemiology like SI-model
 - assume an average person no personality types
 - ! limited parameters, e.g. no spatial dynamics, battery consumption, or complex infect routines
 - Field studies
 - representative people (selection and scale)
 - expensive devices
 - ! costly, time consuming and difficult to arrange

Research – Up to now

- Approaches used to evaluate mobile security & privacy
 - Simple non-interactive movement models
 - infection/privacy evaluation on top of modeled movement
 - ! interaction cannot change (movement) behavior
 - not tailored for security and privacy research
 - Real-world movement data
 - using anonym user location traces of cellular networks
 - ! unsuitable location accuracy (= cell size)
 - Iegal issues and hard to obtain in most countries

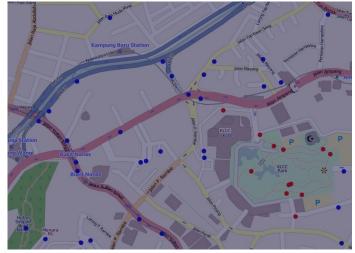
Why we chose to use simulation?

- 1. Modeling threats for simulation helps to understand parameters
 - technical, personal and social ones
- 2. Security enhancing and privacy preserving techniques can be tested against modeled threats to study their effectiveness
 - Changing different parameters can be tested
- 3. Any simulation parameter can be observed, also those not covered by other approaches
 - "Who infected whom when, how and why?"
 - Lots of parameters can be visualized for understanding
 also for laymen


MOSP Simulator – Basic Features

- Modeling the world
 - Maps from osm.org for realistic environment
 - Road network for movement
 - Points of interest and other geo-spatial data can be used
 - cafe/bar/pub, residential area, road width

- Modeling people
 - Types/groups (café visitor, walker, ...)
 - Personal parameters (internet usage, speed, like drinking, ...)
 - Behavior may change
 - Actions, movement pattern
 - end of video: drunken one does not find his home
- Movement
 - Random movement on map
 - Routed movement from a to b
 - Stop anywhere


live visualization: people go to work, red ones go drinking and all go home.

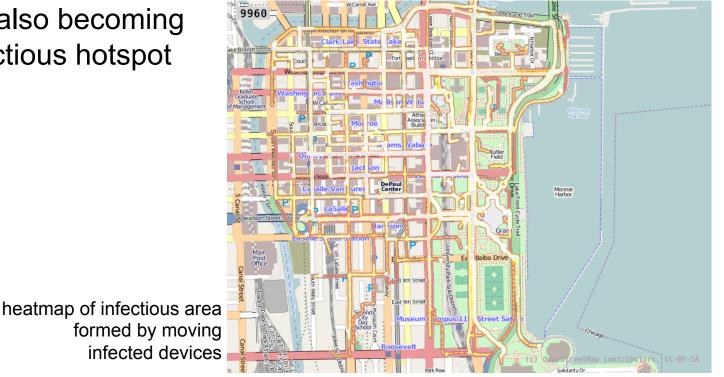
Enter modeled locations, do something at map border

- Action, Interaction and perception
 - Actions
 - being an infectious zombie

- "Who is in my vicinity?"
 - infect them all!
- Interaction
 - taking a photo of others
 - Upload photo to a service
 - complex infection routines

Benjamin Henne Towards a Mobile Security & Privacy Simulator, IEEE Conference on Open Systems, 27.09.2011

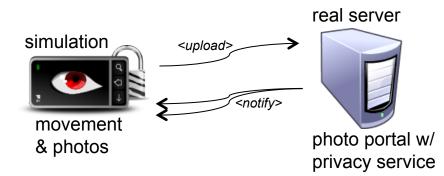
live visualization of zombie infect



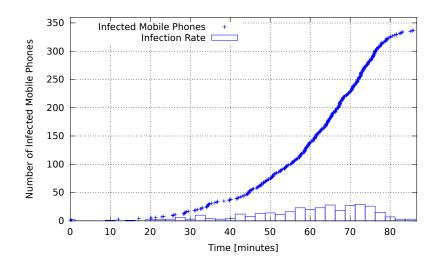
MoSP: more complex infection routine

Wireless network based infection

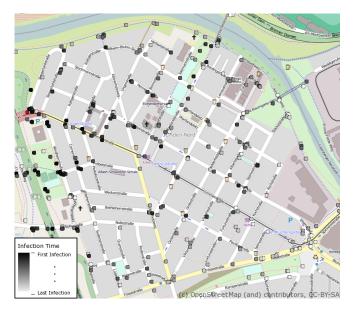
- Infection if being in range of infected in distance up to 8 meters for minimal 8 seconds and requesting connection
- Finally also becoming an infectious hotspot



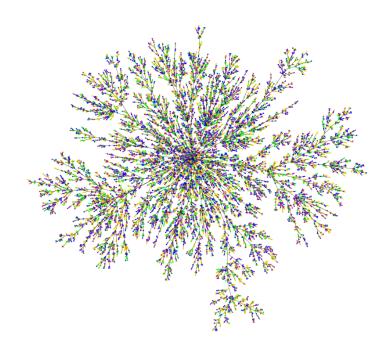
MoSP: simulation connecting real service


₋eibniz Jniversität Hannover

- Evaluating a photo web portal with privacy service to test privacy preserving techniques
 - Simulation of people moving around and taking snapshots
 - People upload photos to online service (real system)
 - Service may inform other people having been snapped



- Visualization of results
 - Plotting numbers
 - Map visualization



- Visualization of results
 - Net graph: Who infects whom?
 - Heatmap: infectious areas

User modeling

Future Work

- Different user/agent modeling approaches
- Non-direct/alternative routing
 - If routing, also use alternative ways to the shortest path
- Connecting simulator and real system
 - Wrapper vs. Integration of real network stack
- Connecting simulators
 - Partition simulation: partition map, indoor simulation
- Extend the software framework, add more building blocks
 - <u>http://www.dcsec.uni-hannover.de/mosp-sim.html</u>